

Impacts of East Asian Summer and Winter Monsoon on Interannual Variations of Mass Concentrations and Direct Radiative Forcing of Black Carbon over Eastern China Yu Hao Mao^{1*}, and Hong Liao² ¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China ²School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China *Corresponding author address: Y. H. Mao (<u>vhmao@mail.iap.ac.cn)</u>

1 Abstract. We applied a global three-dimensional chemical transport model 2 (GEOS-Chem) to examine the impacts of the East Asian monsoon on the interannual variations of mass concentrations and direct radiative forcing (DRF) of black carbon 3 (BC) over eastern China (110-125°E, 20-45°N). With emissions fixed at the year 4 2010 levels, model simulations were driven by the Goddard Earth Observing System 5 (GEOS-4) meteorological fields for 1986-2006 and the Modern Era 6 7 Retrospective-analysis for Research and Applications (MERRA) meteorological fields for 1980-2010. During the period of 1986-2006, simulated JJA and DJF 8 surface BC concentrations were higher in MERRA than in GEOS-4 by 0.30 $\mu g m^{-3}$ 9 (44%) and 0.77 μ g m⁻³ (54%), respectively, because of the generally weaker 10 11 precipitation in MERRA. We found that the strength of the East Asian summer monsoon (EASM, (East Asian winter monsoon, EAWM)) negatively correlated with 12 simulated JJA (DJF) surface BC concentrations (r = -0.7 (-0.7) in GEOS-4 and -0.4 13 (-0.7) in MERRA), mainly by the changes in atmospheric circulation. Relative to the 14 five strongest EASM years, simulated JJA surface BC concentrations in the five 15 weakest monsoon years were higher over northern China (110-125 °E, 28-45 °N) by 16 0.04–0.09 μ g m⁻³ (3–11%), but lower over southern China (110–125 °E, 20–27 °N) 17 by 0.03–0.04 μ g m⁻³ (10–11%). Compared to the five strongest EAWM years, 18 19 simulated DJF surface BC concentrations in the five weakest monsoon years were higher by 0.13–0.15 μ g m⁻³ (5–8%) in northern China and by 0.04–0.10 μ g m⁻³ (3– 20 12%) in southern China. The resulting JJA (DJF) mean all-sky DRF of BC at the top 21 of the atmosphere were 0.04 W m⁻² (3%, (0.03 W m⁻², 2%)) higher in northern China 22 but 0.06 W m⁻² (14%, (0.03 W m⁻², 3%)) lower in southern China. In the weakest 23 monsoon years, the weaker vertical convection led to the lower BC concentrations 24 above 1-2 km in southern China, and therefore the lower BC DRF in the region. The 25 differences in vertical profiles of BC between the weakest and strongest EASM years 26 (1998–1997) and EAWM years (1990–1996) reached up to $-0.09 \ \mu g \ m^{-3}$ (-46%) and 27 -0.08 µg m^{-3} (-11%) at 1-2 km in eastern China. 28

1 1 Introduction

2 High concentrations of aerosols in China have been reported in recent years (e.g., Zhang et al., 2008, 2012), which are largely attributed to the increases in emissions 3 4 due to the rapid economic development. In addition, studies have shown that meteorological parameters are important factors in driving the interannual variations 5 of aerosols in China (e.g., Jeong and Park, 2013; Mu and Liao, 2014; Yang et al., 6 7 2015). For example, Mu and Liao (2014) reported that meteorological parameters, e.g., 8 precipitation, wind direction and wind speed, and boundary layer condition, 9 significantly influence the variations of emissions, transport, and deposition of aerosols. 10

China is located in the East Asian monsoon (EAM) domain. In a strong (weak) 11 summer monsoon year, China experiences strong (weak) southerlies, large rainfall in 12 northern (southern) China, and a deficit of rainfall in the middle and lower reaches of 13 the Yangtze River (northern China) (Zhu et al., 2012). A strong winter monsoon is 14 characterized by a stronger Siberian High and Aleutian Low (Chen et al., 2000), and 15 China thus experiences stronger northerlies, more active cold surge, lower surface 16 temperature, and excess snowfall (Jhun and Lee, 2004). The EAM has been reported 17 to influence the interannual variations of aerosols in China, via in changes in monsoon 18 circulation, precipitation, vertical convention, and etc. (e.g., Liu et al., 2010; Zhang et 19 al., 2010a, 2010b; Yan et al., 2011; Zhu et al., 2012). The observed weakening EAM 20 21 in recently years is also considered to contribute to the increase in aerosols in eastern Asia (e.g., Chang et al., 2000; Ding et al., 2008; Wang et al., 2009; Zhou et al., 2015). 22 Studies have reported that the strength of the East Asian summer monsoon 23 24 (EASM) negatively influences the interannual variations of aerosols in eastern China. 25 Tan et al. (2015) showed that both the MODIS aerosol mass concentration and fine 26 mode fraction in eastern China are high during weak monsoon years but low during 27 active monsoon years for 2003-2013. By using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 28 reanalysis data and surface observations, Zhang et al. (2016) reported that the 29

frequency of occurrence of cyclone related weather patterns decreases in the weak 1 EASM years, which significantly degrades the air quality in northern China for 1980– 2 2013. Modeling studies also reported that the strength of the EASM influences 3 4 simulated aerosol concentrations and optical depths over eastern Asia (Zhang et al., 2010a, 2010b; Yan et al., 2011; Zhu et al., 2012). For example, Zhu et al. (2012) 5 using a global chemical transport model (GEOS-Chem) found that simulated summer 6 surface PM_{2.5} (particulate matters with a diameter of 2.5 µm or less) concentrations 7 averaged over eastern China (110-125°E, 20-45°N) are ~18% higher in the five 8 weakest summer monsoon years than in the five strongest monsoon years for 1986-9 2006. 10

Similarly, negative correlations have been found between the strength of the East 11 Asian winter monsoon (EAWM) and changes of air quality in eastern China. By 12 analyzing the observed visibility and meteorological parameters from surface stations, 13 14 studies have shown that the weak EAWM is related to the decrease of cold wave 15 occurrence and surface wind speed, and therefore partially accounts for the decrease of winter visibility and the increase of number of haze days and the severe haze 16 17 pollution events in China from 1960s (L. Wang et al., 2014; Qu et al., 2015; Yin et al., 2015). By further analyzing the reanalysis data, e.g., NCEP/NCAR and European 18 19 Centre for Medium-Range Weather Forecasts (ECMWF), Li et al. (2015) showed that 20 the stronger (weaker) EAWM is correlated with the less (more) wintertime fog-haze days. The weak EAWM results in a reduction of wind speed and decline in the 21 frequency of northerly winds, which leads to an increase in the number of haze days 22 23 and occurrences of severe haze events (Chen and Wang, 2015; Zhou et al., 2015). Zhang et al. (2016) reported that the strong EAWM increases the frequency of 24 occurrence of anticyclone related weather patterns and therefore improves the air 25 quality in northern China for 1980-2013. 26

Black carbon (BC) as a chemically inert species is a good tracer to investigate the
impact of the meteorological parameters and the EAM on the interannual variations of
aerosols. BC is an important short-lived aerosol; the reduction of BC emissions is
identified as a near-term approach to benefit the human health, air quality, and climate

change efficiently (Ramanathan and Carmichael, 2008; Shindell et al., 2012; Bond et 1 al., 2013; IPCC, 2013; Smith et al., 2013). BC emissions in China have been 2 dramatically increased in the recent several decades, which contribute about 25% of 3 the global total emissions (Cooke et al., 1999; Bond et al., 2004; Lu et al., 2011; Qin 4 and Xie, 2012; Wang et al., 2012). Observed annual mean surface BC concentrations 5 are typically about 2–5 μ g m⁻³ at rural sites (Zhang et al., 2008). Simulated annual 6 direct radiative forcing (DRF) due to BC at the top of the atmosphere (TOA) is in the 7 range of 0.58–1.46 W m⁻² in China, reported by previous modeling studies 8 (summarized in Li et al., 2016). Mao et al. (2016) using the GEOS-Chem model 9 showed that annual mean BC DRF averaged over China increases by 0.35 W m⁻² 10 (51%) between 2010 and 1980, which is comparable to the global annual mean DRF 11 values of BC (0.4 W m⁻²), tropospheric ozone (0.4 W m⁻²), and carbon dioxide (1.82 12 W m⁻²) (IPCC, 2013). 13

14 The changes in BC concentrations in China are coupled with the changes in monsoon. Studies in the past decades were generally focused on the impacts of BC on 15 the Asian monsoon (Menon et al., 2002; Lau et al., 2006; Meehl et al., 2007; 16 17 Bollasina et al., 2011). Studies also showed that the climate effect of increasing BC could partially explain the "north drought/south flooding" precipitation pattern in 18 19 China in recent decades (e.g., Menon et al., 2002; Gu et al., 2010). Conversely, the 20 EAM could influence the spatial and vertical distributions of BC concentrations and further the radiative forcing and climate effect of BC. However, to our knowledge, 21 few studies have systematically quantified the impact the EAM on the variations of 22 23 concentrations and DRF of BC in China.

The goal of the present study is to improve our understanding of the impacts of the EAM on the interannual variations of surface concentrations, vertical distributions, and DRF of BC in eastern China for 1980–2010. We aim to examine the mechanisms through which the EASM and EAWM influence the variations of BC. We describe the GEOS-Chem model and numerical simulations in Sect. 2. Sect. 3 shows simulated impacts of the EASM on interannual variations of June-July-August (JJA) BC in eastern China and examines the influence mechanisms. Sect. 4 presents the impacts of

- 1 the EAWM on interannual variations of December-January-February (DJF) BC and
- 2 the relevant mechanisms. Summary and conclusions are given in Sect. 5.
- 3

4 2 Methods

5 2.1 GEOS-Chem Model and Numerical Experiments

The GEOS-Chem model is driven by assimilated meteorology from the Goddard 6 7 Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO, Bey et al., 2001). Here we use GEOS-Chem version 9-01-03 8 (available at http://geos-chem.org) driven by the GEOS-4 and the Modern Era 9 Retrospective-analysis for Research and Applications (MERRA) meteorological 10 fields (Rienecker et al., 2011), with 6 h temporal resolution (3 h for surface variables 11 and mixing depths), 2° (latitude) $\times 2.5^{\circ}$ (longitude) horizontal resolution, and 30 12 (GEOS-4) or 47 (MERRA) vertical layers from the surface to 0.01 hPa. The 13 GEOS-Chem simulation of carbonaceous aerosols has been reported previously by 14 Park et al. (2003). Eighty percent of BC emitted from primary sources is assumed to 15 be hydrophobic, and hydrophobic aerosols become hydrophilic with an e-folding time 16 of 1.2 days (Cooke et al., 1999; Chin et al., 2002; Park et al., 2003). BC in the model 17 is assumed to be externally mixed with other aerosol species. 18

19 Tracer advection is computed every 15 minutes with a flux-form semi-Lagrangian method (Lin and Rood, 1996). Tracer moist convection is computed using GEOS 20 21 convective, entrainment, and detrainment mass fluxes as described by Allen et al. 22 (1996a, b). The deep convection scheme of GEOS-4 is based on Zhang and McFarlane (1995), and the shallow convection treatment follows Hack (1994). 23 MERRA convection is parameterized using the relaxed Arakawa-Schubert scheme 24 (Arakawa and Schubert, 1974; Moorthi and Suarez, 1992). Simulation of aerosol wet 25 and dry deposition follows Liu et al. (2001) and is updated by Wang et al. (2011). 26 Wet deposition includes contributions from scavenging in convective updrafts, rainout 27 from convective anvils, and rainout and washout from large-scale precipitation. Dry 28 29 deposition of aerosols uses a resistance-in-series model (Walcek et al., 1986)

- 1 dependent on local surface type and meteorological conditions.
- The anthropogenic emissions of BC are from Bond et al. (2007) globally and 2 updated in Asia (60 °E-150 °E, 10 °S-55 °N) with the Regional Emission inventory 3 4 in Asia (REAS, available at http://www.jamstec.go.jp/frsgc/research/d4/emission.htm, Ohara et al., 2007). Seasonal variations of anthropogenic emissions are considered in 5 China and Indian using monthly scaling factors taken from Kurokawa et al. (2013). 6 7 Global biomass burning emissions of BC are taken from the Global Fire Emissions Database version 3 (GFEDv3, van der Werf et al., 2010) with a monthly temporal 8 resolution. More details about the configuration of BC emissions are discussed by 9 Mao et al. (2016). 10
- We conduct two simulations driven by GEOS-4 for years 1986-2006 (VMETG4) 11 and by MERRA for 1980-2010 (VMET). Our analysis centers on the period of 1986-12 2006, the years for which both GEOS-4 and MERRA data are available. Both 13 14 simulations are preceded by 1-year spin up. In the simulations, meteorological parameters are allowed to vary year to year, but anthropogenic and biomass burning 15 emissions of BC are fixed at the year 2010 levels. The simulations thus represent the 16 17 impact of variations in meteorological parameters on the interannual variations of BC. 18 The evaluations of GEOS-Chem aerosol simulations in China using the MERRA and 19 GEOS-4 data are discussed in the studies, e.g., Mao et al. (2016) and Yang et al. 20 (2015), respectively.
- 21

22 **2.2 The Definition of EAM Index**

The interannual variations in the strength of the EAM are commonly represented by the indexes. Following Zhu et al. (2012) and Yang et al. (2014), we use the EASM index (EASMI, **Fig. 1a**) introduced by Li and Zeng (2002) in the present study based on the GEOS-4 meteorological parameters for 1986–2006 or the MERRA data for 1980–2010 (referred to as EASMI_GEOS and EASMI_MERRA, respectively). The EASMI calculated using the reanalyzed NCEP/NCAR datasets (Kalnay et al., 1996; Zhu et al., 2012, referred to as EASMI_NCEP, not shown) agrees well (*r* > 0.97) with

EASMI_GEOS for 1986–2006 and with EASMI_MERRA for 1980–2010, indicating
 that both the GEOS-4 and MERRA data have a good representation of the strength of
 the EASM. Positive values of EASMI indicate strong summer monsoon years while
 negative values indicate weak monsoon years.

Numerous studies have shown that the intensity of the EAWM is closely tied with 5 wind, air temperature, and precipitation (e.g., Yan et al., 2009). The definitions of the 6 7 EAWM index (EAWMI) are thus quite different in the previous studies (Table 1). Here we calculate the EAWMI (Fig. 1b) as the sum of zonal sea level pressure 8 differences (110 °E vs.160 °E) over 20–70 °N, following Wu and Wang (2002). The 9 EAWMIs in GEOS-4 and MERRA (referred to as EAWMI_GEOS and 10 EAWMI_MERRA) in the present study show strong correlations with those based on 11 surface temperature, wind, and pressure (r = 0.51 - 0.82, Table 1) and are generally 12 consistent with that in NECP (referred to as EAWMI_NCEP), with the correlation 13 14 coefficients larger than 0.94. The EAWMIs in GEOS and MERRA are thus reliable to represent the strength of the EAWM. Similarly, negative (positive) values of EAWMI 15 16 indicate weak (strong) winter monsoon years.

17

3. Impact of EASM on Interannual Variation of BC

19 3.1 Simulated JJA BC in GEOS-4 and MERRA

20 Fig. 1a also show simulated JJA surface concentrations of BC averaged over 21 eastern China (110-125 °E, 20-45 °N). Simulated JJA surface concentrations of BC have strong interannual variations, which range from 0.95–1.04 μ g m⁻³ (–5.3% to 22 4.2%) in VMET and 0.65–0.78 μ g m⁻³ (–6.8% to 12.5%) in VMETG4. During the 23 period of 1986–2006, JJA surface BC concentrations on average are 0.30 $\mu g m^{-3}$ 24 (44%) higher in MERRA than in GEOS-4. Our analyses indicate that different 25 precipitation patterns between GEOS-4 and MERRA likely account for the 26 abovementioned differences in BC concentrations using the two meteorological fields. 27

We find that the JJA mean precipitation is stronger in GEOS-4 than in MERRA in most of China, except in southern China (**Fig. 1S**). In **Fig. 2a**, we further compare the differences in precipitation between GEOS-4 and MERRA averaged over eastern China. The JJA mean precipitation in GEOS-4 is 2.5 mm d⁻¹ (29%) stronger than that in MERRA for 1986–2006. The resulting wet deposition (**Fig. 2b**) is also higher by 0.018 kg s⁻¹ (11%) in GEOS-4 than in MERRA. The stronger precipitation in GEOS-4 thus results in the significantly lower surface BC concentrations.

8

9 3.2 Correlation between JJA BC and EASMI

In simulations VMET and VMETG4, we find that monsoon strength has large impacts on summertime BC concentrations over eastern China. JJA surface concentrations of BC negatively correlate with both the EASMI_GEOS4 and EASMI_MERRA (**Fig. 1a**). The correlation coefficient between simulated surface BC concentrations and the EASMI_GEOS4 is -0.7 for 1986–2006, and those for the EASMI_MERRA are -0.5 for 1980–2010 and -0.4 for 1986–2006. Simulated surface BC concentrations are thus high (low) in the weak (strong) EASM years.

Fig. 3a shows the spatial distributions of the correlation coefficients between BC 17 surface concentrations and the EASMI_GEOS4 or EASMI_MERRA. Negative 18 correlations are found in central and northeastern China with the strongest negative 19 correlations in eastern China and the Tibetan Plateau (<-0.8), while positive 20 21 correlations are over southern and northwestern China with the largest values in southern China (> 0.7). The correlation coefficients in GEOS-4 and MERRA show 22 similar spatial distribution and magnitude, except that positive correlations are found 23 24 in larger regions in MERRA than in GEOS-4. Our results are generally consistent with those from Zhu et al. (2012), which reported that surface concentrations of $PM_{2.5}$ 25 in GEOS-4 are high in northern China (110-125 °E, 28-45 °N) but low in southern 26 China (110-125°E, 20-27°N) in the weak EASM years than in the strong monsoon 27 28 years.

29

1 3.3 Differences in BC between Weak and Strong EASM years

In order to quantify to what degree the strength of the EASM influences surface 2 BC concentrations in China, we examine the differences in the JJA mean surface BC 3 concentrations between five weakest (1988, 1993, 1995, 1996, and 1998) and five 4 strongest (1990, 1994, 1997, 2004, and 2006) EASM years during 1986-2006 (Fig. 5 4a). We select these weakest (or strongest) monsoon years based on the five largest 6 negative (or positive) values of the normalized EASMI in both GEOS-4 and MERRA 7 within 1986–2006. The spatial distribution of the differences in concentrations 8 9 between the weakest and strongest summer monsoon years is in good agreement with the distribution of the correlation coefficients between concentrations and EASMI 10 (Fig. 3a). The differences in JJA mean surface BC concentrations are highest in 11 northern China with a maximum exceeding 0.3 μ g m⁻³(40%). Relative to the strongest 12 summer monsoon years, JJA surface BC concentrations in GEOS-4 in the weakest 13 summer monsoon years are 0.09 μ g m⁻³ (11%) higher over northern China and 0.03 14 $\mu g m^{-3}$ (11%) lower over southern China (Table 2). The corresponding values in 15 MERRA are 0.04 μ g m⁻³ (3%) higher over northern China and 0.04 μ g m⁻³ (10%) 16 lower over southern China. In the eastern China, JJA surface BC concentrations in the 17 weakest monsoon years are higher on average by 0.05 μ g m⁻³ (9%) in GEOS-4 and by 18 0.02 μ g m⁻³ (2%) in MERRA. The different patterns of BC concentrations between 19 northern and southern China can also been see in Fig. 5a, which shows the 20 height-latitude plot of the differences in BC concentrations averaged over 110-125 °E 21 between the five weakest and five strongest monsoon years. BC concentrations in the 22 whole troposphere are lower south of 27 °N but higher north of 27 °N in the weakest 23 monsoon years than in the strongest years. 24

Zhu et al. (2012) have shown that the impacts of the EASM on aerosol
concentrations in eastern China are mainly by the changes in atmospheric circulation.
Fig. 6a shows composite differences in JJA 850 hPa wind (m s⁻¹) between the five
weakest and five strongest EASM years from the GEOS-4 and MERRA data. Relative
to the strong EASM years, an anomalous convergence in northern China leads to an

increase in BC concentrations in the weak EASM years in the region, while an 1 2 anomalous anticyclone in the south of the middle and lower reaches of the Yangtze River and nearby oceans results in the decreased BC concentrations in southern China 3 4 (Fig. 4a). The convergence and divergence can also be seen in Fig. 7a, which shows anomalous vertical transport of BC concentrations averaged over 110-125 ° E. 5 Compared to the strong monsoon years, increased upward mass fluxes of BC 6 7 concentrations are found north of 25° N in both MERRA and GEOS-4, while decreased fluxes exist south of 25 °N. The pattern of the anomalous vertical transport 8 of BC concentrations confirms the anomalous convergence in northern China and 9 anomalous divergence in southern China in the weakest monsoon years. 10

The differences in winds between the weak and strong monsoon years lead to 11 differences in transport of BC. We summary in Table 3 the differences in simulated 12 horizontal mass fluxes of JJA BC at the four lateral boundaries of the box in northern 13 14 and southern China (Fig. 4a, from the surface to 10 km), based on simulations VMETG4 and VMET. The boxes are selected as BC concentrations in the regions are 15 higher or lower in the weakest monsoon years than in the strongest monsoon years 16 17 (Fig. 4a). In northern China, the weakest monsoon years show larger inflow fluxes of BC by 1.27 (1.01) and 2.40 (1.21) kg s⁻¹, respectively, at the south and west 18 boundaries, lower outflow by 0.62 (0.67) kg s⁻¹ at the north boundary, and larger 19 outflow by 3.28 (1.29) kg s⁻¹ at the east boundary, based on simulation VMETG4 20 (VMET). The net effect is a larger inflow of BC by 1.01 (1.60) kg s⁻¹, which leads to 21 the higher surface BC concentrations in the weakest monsoon years in northern China. 22 In southern China, we find larger inflow by 0.81 (0.35) kg s⁻¹ at the west boundary, 23 larger outflow by 0.91 (0.72) kg s⁻¹ at the north boundary, and less outflow by 0.09 24 (0.09) kg s⁻¹ at the east boundary. Relative to the strongest monsoon years, the inflow 25 in the south boundary in the weakest monsoon years is less by 0.09 kg s⁻¹ in GEOS-4 26 and larger by 0.01 kg s⁻¹ in MERRA. As a result, the weakest monsoon years have 27 larger outflow fluxes of 0.09 and 0.27 kg s^{-1} than the strongest monsoon years in 28 GEOS-4 and in MERRA, respectively. These results indicate that the differences in 29 transport of BC due to the changes in atmospheric circulation are a dominant 30

- 1 mechanism through which the EASM influences the variations of JJA BC
- 2 concentrations in eastern China.
- 3

4 3.4 Impact of EASM on Vertical Profile and DRF of BC

Previous studies have shown that vertical distribution of BC is critical for the 5 calculation of the BC DRF (e.g., Bond et al., 2013; Li et al., 2016). The calculation of 6 the BC DRF is dependent on several factors, e.g., BC lifetime and radiative forcing 7 8 efficiency, which are significantly influenced by vertical distribution of BC. Vertical 9 profile of BC affects its wet scavenging and hence its lifetime (Bond et al., 2013). The 10 direct radiative forcing efficiency of BC enhanced considerably when BC is located at high altitude largely because of the radiative interactions with clouds (Samset et al., 11 2013). For example, BC above 5 km accounts for ~40% of the global DRF of BC 12 (Samset et al., 2013). 13

Fig. 8a compares the simulated JJA mean all-sky DRF of BC at the TOA in the 14 five weakest and five strongest EASM years during 1986-2006. Model results are 15 from simulation VMET. The BC DRF is calculated using the Rapid Radiative 16 17 Transfer Model for GCMs (RRTMG, Heald et al., 2014), which is discussed in details by Mao et al. (2016). We find that the BC DRF is highest (> 3.0 W m^{-2}) over northern 18 China in JJA. The spatial distributions of the differences in the BC DRF between the 19 weakest and strongest monsoon years are similar to those in BC concentrations (Fig. 20 4a). Relative to the strongest monsoon years, the TOA DRF of BC shows an increase 21 north of 28 °N while a reduction south of 27 °N in the weakest monsoon years. The 22 BC DRF in northern China is 0.04 W m^{-2} (3%, Table 4) higher in the weakest than 23 strongest monsoon years, with a maximum of 0.3 W m⁻² in Jiangsu province. In 24 southern China, the weakest monsoon years have a lower DRF by 0.06 W m^{-2} (14%). 25 As a result, the TOA DRF of BC in eastern China is 0.01 W m^{-2} (1%) higher in the 26 weakest monsoon years than in the strongest monsoon years. 27

We further compare in **Fig. 9a** the vertical distribution of simulated JJA mean all-sky DRF of BC in the five weakest and five strongest EASM years, averaged over

1 110–125 °E. We find large BC-induced forcing at the latitude of 35–40 °N; BC DRF is higher by >0.13 W m⁻²(10–20%) over 30–35 °N in the five weakest EASM years 2 compared to the five strongest EASM years, which are consistently with those in Fig. 3 **8a**. A maximum BC DRF (>2 W m^{-2}) is shown approximately at an altitude of 3–10 4 km, because of the larger direct radiative forcing efficiency of BC at high altitude. 5 Fig. 10a shows the simulated vertical profiles of JJA BC mass concentrations (µg 6 7 m⁻³) averaged over eastern China for 1986–2006. The simulated BC concentrations are higher in MERRA than in GEOS-4 below 3 km. We find that the vertical profiles 8 of JJA BC in GEOS-4 generally show larger interannual variations than those in 9 MERRA. The variations of JJA BC in MERRA and in GEOS-4 range from -5% to 4% 10 (-7% to 12%) at the surface, -25% to 16% (-23% to 23%) at 1 km, -35% to 42% (-11 32% to 46%) at 2 km, -23% to 32% (-25% to 67%) at 3 km, -13% to 10% (-18% to 12 71%) at 4 km, -10% to 7% (-14% to >76%) at 5-8 km. The differences in vertical 13 profiles of BC in MERRA between the weakest and strongest EASM years (1998-14 1997) are -46% to 7%, with the largest differences of -0.09 μ g m⁻³ at ~2 km. We 15 further compare the differences in simulated vertical profiles of JJA BC between the 16 17 five weakest and five strongest EASM years averaged over northern and southern China in MERRA. The decreased BC concentrations throughout the troposphere in 18 19 the weakest monsoon years lead to a reduction in the BC DRF in southern China, 20 while the increased BC concentrations below 2 km result in a significant increase of the BC DRF in northern China. 21

Studies have shown that the impact of non-China emissions is significant on 22 23 vertical profiles and hence DRF of BC in China; the contributions of non-China emissions to concentrations and DRF of BC in China are larger than 20% at 5 km 24 altitude and about 17-43%, respectively (e.g., Li et al., 2016). Figure 11a shows 25 vertical distribution of simulated JJA mean all-sky DRF of BC due to non-China 26 emissions in the five weakest and five strongest EASM years, averaged over $110-125^{\circ}$ 27 E. The non-China emissions induce a high (> 0.16 W m⁻²) BC DRF above ~5 km due 28 to the significant contributions of non-China emissions to BC concentrations at high 29 altitudes. Compared to the five strongest EASM years, the simulated DRF of BC due 30

- 1 to non-China emissions in the weakest EASM years is larger (by $\sim 10\%$) at 25–40 °N,
- 2 because of the higher (by > 10%) BC concentrations transported to the region (Fig.
- 3 **12a**).
- 4

5 4 Impact of EAWM on Interannual Variation of BC

6 4.1 Simulated DJF BC in GEOS-4 and MERRA

Simulated DJF surface BC concentrations averaged over eastern China also have 7 strong interannual variations, ranging from 1.30–1.58 μ g m⁻³ (–8.9 to 10.8%) in 8 GEOS-4 for 1986–2006 and from 2.05–2.31 μ g m⁻³ (–7.0% to 5.2%) in MERRA for 9 1980-2010 (Fig. 1b). DJF mean surface concentrations of BC for 1986-2006 are 0.77 10 $\mu g m^{-3}$ (54%) higher in MERRA than in GEOS-4. Again, the consistently stronger 11 precipitation in GEOS-4 (by 0.3 mm d^{-1} , 21% on average) largely accounts for the 12 lower surface BC concentrations (Figs. 1S and 2a). The DJF mean precipitation 13 averaged for 1986-2006 is higher in GEOS-4 than in MERRA in most of China (Fig. 14 1S), except in the delta of the Yangtze River in eastern China. The resulting 15 differences in BC wet deposition between GEOS-4 and MERRA show similar 16 patterns as those in precipitation (not shown). The DJF mean wet deposition of BC in 17 GEOS-4 is generally higher (by 0.007 kg s^{-1} , 5% on average) than that in MERRA for 18 19 1986–2006, except in 1998 (Fig. 2b). In addition, we find that the planetary boundary 20 layer height (PBLH) partially accounts for the abovementioned differences in surface 21 BC concentrations between GEOS-4 and MERRA. The DJF mean PBLH is generally 22 higher in GEOS-4 than in MERRA by 11.6 m (2%, not shown).

23

24 4.2 Correlation between DJF BC and EAWMI

Fig. 1b shows the normalized EAWMI and simulated DJF mean surface BC concentrations averaged over eastern China from simulation VMET for 1980–2010 and from VMETG4 for 1986–2006. The correlation coefficient between the surface BC concentrations and the EAWMI_GEOS4 is -0.7 for 1986–2006, and those

between surface BC and the EAWMI_MERRA are -0.6 and -0.7, respectively, for 1 1980-2010 and for 1986-2006. Different definitions of the EAWMI also show 2 negative correlations with simulated DJF surface BC concentrations (Table 1, r = -3 0.16 to -0.72). This negative correlation between simulated DJF mean surface BC 4 concentrations and the EAWMIs over eastern China indicates that surface BC 5 concentrations are generally high in the weak winter monsoon years. The correlation 6 coefficients in GEOS-4 and MERRA show similar spatial distribution and magnitude; 7 negative correlations are found in most of China, while positive correlations are over 8 southwestern China (Fig. 3b). 9

10

11 4.3 Differences in BC between Weak and Strong EAWM years

12 Fig. 4b shows the differences in simulated DJF mean surface BC concentrations (µg m⁻³) between weakest (1990, 1993, 1997, 1998, and 2002) and strongest (1986, 13 1996, 2001, 2005, and 2006) EAWM years during 1986-2006 from model 14 simulations using the GEOS-4 and MERRA data. The spatial distribution of the 15 differences in concentrations is in good agreement with the distribution of the 16 correlation coefficients between the EAWMI and surface BC (Fig. 3b). In eastern 17 China, DJF surface BC concentrations in GEOS-4 are 0.12 μ g m⁻³ (9%) higher in the 18 weakest winter monsoon years than in the strongest years (Table 2). The 19 corresponding values are 0.11 μ g m⁻³ (5%) higher in MERRA. In northern China, 20 simulated surface BC concentrations are higher in the weakest monsoon years than in 21 the strongest monsoon year by 0.13 μ g m⁻³ (8%) in GEOS-4 and by 0.14 μ g m⁻³ (5%) 22 in MERRA. In southern China, the corresponding concentrations are higher by 0.10 23 $\mu g m^{-3}$ (12%) and 0.04 $\mu g m^{-3}$ (3%), respectively, in GEOS-4 and in MERRA. We 24 find that the region over 30-40° N has lower BC concentrations in the weakest 25 monsoon years. This lower concentrations are also shown in Fig. 5b, which represents 26 the height-latitude of differences in simulated DJF mean BC concentrations between 27 the five weakest and five strongest EAWM years during 1986-2006 and averaged 28 over 110-125° E from model simulations VMETG4 and VMET. Increased BC 29

- 1 concentrations in the weakest monsoon years are found over north of 20 ° N in both
- 2 GEOS-4 and MERRA, except the region over 30-40 °N and above 1 km.

The changes in atmospheric circulation again likely account for the increased BC 3 4 concentrations in the weak winter monsoon years in eastern China. Fig. 6b shows the composite differences in DJF 850 hPa wind (m s^{-1}) between the five weakest and five 5 strongest EAWM years from the GEOS-4 and MERRA data. The differences in wind 6 in GEOS-4 show a similar pattern as those in MERRA. In DJF, northerly winds are 7 weaker in the weaker monsoon years than in the stronger monsoon years. As a result, 8 anomalous southwesterlies are found in the weakest monsoon years along the coast of 9 eastern China and anomalies southeasterlies control northern China and northeast 10 China, which do not favor the outflow of pollutants from eastern China (Table 3). Fig. 11 **7b** shows the differences in simulated upward mass flux of DJF BC (kg s^{-1}) between 12 the five weakest and five strongest EAWM years. The differences are averaged over 13 14 the longitude range of $110-125^{\circ}$ E. Compared to the strongest monsoon years, increases in upward mass flux of BC concentrations are found over 20-30°N and 15 north of 40 ° N in the troposphere in the weakest monsoon years, confirming the 16 increased surface BC concentrations in northern and southern China (Figs. 4b and 5b). 17 We find decreased upward transport of BC over 30-40 ° N in the weakest monsoon 18 19 years, which is consistent with decreased concentrations in the region of static winds 20 (Fig. 6b). Our results are consistent with the studies, e.g., Li et al. (2015) and Zhou et al. (2015), which showed that the change in wind speed and wind direction is the 21 major factor of the negative correlation between the increased winter fog-haze days 22 23 and the weaken of the EAWM in China.

We further summary in Table 3 the differences in horizontal fluxes of DJF BC at the four lateral boundaries of the northern and southern boxes (**Fig. 4b**, from the surface to 10 km) between the five weakest and five strongest EAWM years, based on simulations VMETG4 and VMET. Both northern and southern China show increased BC concentrations in the weakest monsoon years than in the strongest monsoon years (**Fig. 4b**). In the southern box, we find larger inflow of BC by 1.67 (0.99) kg s⁻¹ at the west boundary, less inflow by 1.45 (1.19) kg s⁻¹ at north boundary, less outflow by

0.52 (0.70) kg s⁻¹ at the south boundary, and larger outflow by 0.55 (0.10) kg s⁻¹ at 1 east boundary, from simulation VMETG4 (VMET). The net effect in southern China 2 is a larger inflow of BC by 0.19 (0.40) kg s⁻¹ in the weakest monsoon years than in 3 the strongest monsoon years. In northern China, there is a net effect of larger inflow 4 of BC by 0.64 (0.62) kg s⁻¹ because of the anomalous southerlies and westerlies in the 5 weakest monsoon years. The anomalous southerlies in northern China thus prevent 6 7 the outflow of pollutants and lead to an increase in BC concentrations in the region in the weakest monsoon years. 8

9

10 **4.4 Impact of EAWM on Vertical Profile and DRF of BC**

Fig. 8b shows the simulated DJF mean all-sky TOA DRF of BC in the five 11 weakest and strongest EAWM years during 1986-2006, based on simulation VMET. 12 The simulated BC DRF is high in eastern China, with the largest values (> 5.0 W m^{-2}) 13 in the Sichuan Basin. In northern China, the TOA DRF of BC is 0.03 W m^{-2} (2%, 14 Table 4) higher in the weakest monsoon years than in the strongest monsoon years, 15 consistent to the higher BC concentrations in the region (Fig. 4b). We further separate 16 northern China into two regions, the central China Plain (110-125 °E, 28-36 °N) and 17 the northern China Plain (110-125° E, 37-45° N). Relative to the five strongest 18 monsoon years, the BC DRF in the weakest monsoon years is higher in the northern 19 China Plain by 0.11 W m⁻² (11%) but lower in the central China Plain by 0.03 W m⁻² 20 (1%). In the central China Plain, although the surface concentrations are higher by 21 0.08 μ g m⁻³ (2%) in the weakest monsoon years, the corresponding DRF is lower 22 partially because of the lower column burdens of tropospheric BC (by 0.04 mg m^{-2} , 23 1%, from surface to 10 km). In southern China, the DRF is 0.03 W m^{-2} (3%) lower in 24 the weakest monsoon years than in the strongest monsoon years. In contrast, both 25 surface concentrations (higher by 0.04 μ g m⁻³, 3%) and column burdens (higher by 26 0.02 mg m⁻², 2%) of BC are higher in the weakest monsoon years. We further 27 compare in **Fig. 9b** the vertical distribution of simulated DJF DRF of BC in the five 28 weakest and five strongest EAWM years, averaged over 110-125° E. The 29

BC-induced forcing is large (>2.8 W m⁻²) at the latitude of 20-40 ° N and at an
 altitude of 5-10 km. BC DRF is higher by > 0.1 W m⁻² (> 10%) north of 35 °N in the
 five weakest EAWM years than in the five strongest EAWM years, consistent with
 those in Fig. 8b.

The abovementioned differences in spatial patterns of DRF and BC concentrations 5 are likely because of the vertical distributions of BC concentrations. In general, the 6 7 simulated vertical profiles of DJF BC concentrations are higher in MERRA than in GEOS-4, but the interannual variations are larger in GEOS-4 than in MERRA (Fig. 8 10b). The variations of DJF BC in MERRA (GEOS-4) range from -7% to 5% (-9% 9 to 11%) at the surface, -12% to 10% (-13% to 27%) at 1 km, -19% to 14% (-13% to 10 62%) at 2 km, -14% to 15% (-17% to 57%) at 3 km, -17% to 16% (-22% to 61%) at 11 4 km, -17% to >14% (-22% to >67%) at 5–8 km. We find that the differences in 12 vertical profiles of BC in MERRA between the weakest and strongest EAWM years 13 (1990–1996) are -0.08 to 0.2 µg m⁻³ (-11% to 12%) below 10 km, with the largest 14 differences at the surface and ~1.5 km. We further compare the differences in 15 simulated vertical profiles of DJF BC mass concentrations between the five weakest 16 17 and five strongest EAWM years from model simulation VMET, averaged over 18 southern China, the central China plain, and the northern China Plain. Relative to the 19 strongest monsoon years, decreased BC concentrations are found in the weakest 20 monsoon years from 2 to 5 km in southern China and from 1 to 6 km in the central China Plain. The decreased BC concentrations above 1-2 km lead to the reduction in 21 the DRF in the two regions. In contrast, the higher DRF of BC in the northern China 22 23 Plain in the weakest monsoon years is because of the increased BC concentrations throughout the troposphere. 24

The lower concentrations above 1–2 km in the weakest monsoon years in southern China and the central Chin Plain are likely because of the weaker vertical convection in the weakest monsoon years than in the strongest monsoon years. We calculate the horizontal and vertical fluxes of BC in two boxes of southern China and the central China Plain from 1 to 6 km (Table 5). In vertical direction, the two boxes have upward fluxes in both lower and upper boundaries. Relative to the strongest

monsoon years, the southern box has a net outflow of 0.07 kg s⁻¹ in the weakest
monsoon years; the central China Plain shows a net downward flux of 0.11 kg s⁻¹.
The corresponding net horizontal fluxes are relatively smaller, and about 0.03 kg s⁻¹
in southern China and 0.01 kg s⁻¹ in the central China Plain. The weaker vertical
fluxes in the weakest monsoon years thus result in the lower BC concentrations above
km and therefore the reduction in the DRF in the two regions.

Figure 11b shows the vertical distribution of simulated DJF mean all-sky DRF of
BC due to non-China emissions in the five weakest and five strongest EAWM years,
averaged over 110–125 °E. The non-China emissions induce a high (> 0.35 W m⁻²)
BC DRF at 15–35 °N. We also find a higher (by >5%) DRF of BC north of 25 °N in
the weakest EAWM years than in the strongest years, due to the larger BC
concentrations at the low troposphere in the weakest EAWM years (Fig. 12b).

13

14 5. Summary and conclusions

We quantified the impacts of the EASM and EAWM on the interannual variations of mass concentrations and DRF of BC in eastern China for 1986–2006 and examined the relevant mechanisms. We conducted simulations with fixed anthropogenic and biomass burning emissions at the year 2010 levels and driven by GEOS-4 for 1986– 2006 and by MERRA for 1980–2010.

We found that simulated JJA and DJF surface BC concentrations averaged over eastern China were higher in MERRA than in GEOS-4 by 0.30 μ g m⁻³ (44%) and 0.77 μ g m⁻³ (54%), respectively. Our analyses indicated that generally higher precipitation in GEOS-4 than in MERRA largely accounted for the differences in BC concentrations using the two meteorological fields.

In JJA, simulated BC concentrations showed interannual variations of -5% to 4% in MERRA (-7% to 12% in GEOS-4) at the surface and -35% to 42% in MERRA (-32% to >76% in GEOS-4) above 1 km. The differences in vertical profiles of BC between the weakest and strongest EASM years (1998–1997) reached up to -0.09 µg

m⁻³ (-46%) at 1-2 km. Simulated JJA surface BC concentrations negatively 1 correlated with the strength of the EASM (r = -0.7 in GEOS-4 and -0.4 in MERRA), 2 mainly by the changes in atmospheric circulation. Relative to the five strongest 3 EASM years, simulated JJA surface BC concentrations in the five weakest EASM 4 years were higher over northern China by 0.09 μ g m⁻³ (11%) in GEOS-4 and by 0.04 5 μ g m⁻³ (3%) in MERRA. The corresponding concentrations were lower over southern 6 China by 0.03 μ g m⁻³ (11%) and 0.04 μ g m⁻³ (10%). The resulting JJA mean TOA 7 DRF of BC were 0.04 W m⁻² (3%) higher in northern China but 0.06 W m⁻² (14%) 8 lower in southern China. 9

In DJF, the changes in meteorological parameters alone led to interannual 10 variations in BC concentrations ranging from -7% to 5% in MERRA (-9% to 11% in 11 GEOS-4) at the surface and -19% to >14% in MERRA (-22% to >67% in GEOS-4) 12 above 1 km. Simulated DJF surface BC concentrations negatively correlated with the 13 EAWMI (r = -0.7 in GEOS-4 and -0.7 in MERRA), indicating higher DJF surface 14 BC concentrations in the weaker EAWM years. We also found that the changes in 15 atmospheric circulation likely accounted for the increased BC concentrations in the 16 17 weak EAWM years. In winter, anomalous southerlies in the weak monsoon years did not favor the outflow of pollutants, leading to an increase in BC concentration. 18 19 Compared to the five strongest EAWM years, simulated DJF surface BC 20 concentrations in the five weakest EAWM years were higher in northern China by 0.13 μ g m⁻³ (8%) in GEOS-4 and 0.14 μ g m⁻³ (5%) in MERRA. The corresponding 21 concentrations were also higher in southern China by 0.10 μ g m⁻³ (12%) and 0.04 μ g 22 m^{-3} (3%). The resulting TOA DRF of DJF BC was 0.03 W m^{-2} (2%) higher in 23 northern China but 0.03 W m⁻² (2%) lower in southern China. In southern China, the 24 decreased BC concentrations above 1-2 km in the weakest EAWM years led to the 25 reduction in BC DRF, likely due to the weaker vertical convection. The vertical 26 profiles of BC are lower in weakest EAWM year (1990) than in the strongest year 27 (1996) above 1–2 km, with the largest values of $-0.08 \ \mu g \ m^{-3}$ (-11%) in eastern 28 China. 29

30

- 1 Acknowledgements. This work was supported by the National Basic Research
- 2 Program of China (973 program, Grant 2014CB441202), the Strategic Priority
- 3 Research Program of the Chinese Academy of Sciences Strategic Priority Research
- 4 Program Grant No. XDA05100503, the National Natural Science Foundation of
- 5 China under grants 91544219, 41475137, and 41321064. The GEOS-Chem model is
- 6 managed by the Atmospheric Chemistry Modeling group at Harvard University with
- 7 support from the NASA ACMAP program.
- 8

9 **References**

- Allen, D. J., Rood, R. B., Thompson, A. M., and Hudson, R. D.: Three-dimensional
 ranon 222 calculations using assimilated metrological data and a convective
 mixing algorithm, J. Geophys. Res., 101, 6871–6881, 1996a.
- Allen, D. J., Kasibhatla, P., Thompson, A. M., Rood, R. B., Doddridge, B. G.,
 Pickering, K. E., Hudson, R. D., and Lin, S.-J.: Transport-induced interannual
 variability of carbon monoxide determined using a chemistry and transport model,
 J. Geophys. Res., 101, 28655–28669, 1996b.
- Arakawa, A., and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the
 large-scale environment, Part I, J. Atmos. Sci., 31, 674–701, 1974.
- 19 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q.,
- Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric
 chemistry with assimilated meteorology: Model description and evaluation, J.
 Geophys. Res. Atmos., 106 (D19), 23073–23095, doi:10.1029/2001JD000807,
 2001.
- Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Anthropogenic aerosols and the
 weakening of the South Asian summer monsoon, Science, 334(6055), 502–505,
 doi:10.1126/science.1204994, 2011.
- Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and Klimont, Z.:
 A technology-based global inventory of black and organic carbon emissions from
 combustion, J. Geophys. Res. Atmos., 109(D14), D14203,
 doi:10.1029/2003JD003697, 2004.
- Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G.,
 and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol
 from energy-related combustion, 1850–2000, Global Biogeochem. Cycles, 21,
 GB2018, 2007.
- Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B.
 J., Flanner, M. G., Ghan, S., K ärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.
- K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H.,
- 38 Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J.
- 39 W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren,

S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system:
 scientific assessment, J. Geophys. Res. Atmos., 118 (11), 5380–5552,
 doi:10.1002/jgrd.50171, 2013.

Chang, C.-P., Zhang, Y., and Li, T: Interannual and interdecadal variations of the East
Asian summer monsoon and tropical Pacific SSTs, Part I: Roles of the subtropical
ridge, J. Clim., 13(24), 4310–4325,

- 7 doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2, 2000.
- 8 Chen, H., and Wang, H.: Haze Days in North China and the associated atmospheric
 9 circulations based on daily visibility data from 1960 to 2012, Journal of
 10 Geophysical Research: Atmospheres, 120, doi:10.1002/2015JD023225, 2015.
- 11 Chen, W., Graf, H., and Ronghui, H.: The interannual variability of East Asian Winter
- Monsoon and its relation to the summer monsoon, Adv. Atmos. Sci., 17, 48–60,
 doi:10.1007/s00376-000-0042-5, 2000.
- 14 Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R.

V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric aerosol optical
thickness from the GOCART model and comparisons with satellite and sun
photometer measurements, J. Atmos. Sci., 59, 461–483, 2002.

18 Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J.: Construction of a $1^{\circ} \times 1^{\circ}$

19 fossil fuel emission data set for carbonaceous aerosol and implementation and

- 20 radiative impact in the ECHAM4 model, J. Geophys. Res. Atmos., 104 (D18),
- 21 22137–22162, doi:10.1029/1999JD900187, 1999.

Ding, Y., Wang, Z., and Sun, Y.: Inter-decadal variation of the summer precipitation
in east China and its association with decreasing Asian summer monsoon, Part I:
Observed evidences, Int. J. Climatol., 28(9), 1139–1161, doi:10.1002/joc.1615,
2008.

- Gu, Y., Liou, K. N., Chen, W., and Liao, H.: Direct climate effect of black carbon in
 China and its impact on dust storms, J. Geophys. Res., 115, D00K14,
 doi:10.1029/2009JD013427, 2010.
- Hack, J. J.: Parameterization of moist convection in the NCAR community climate
 model (CCM2), J. Geophys. Res., 99, 5551–5568, 1994.
- Heald, C. L., Ridley, D. A., Kroll, J. H., Barrett, S. R. H., Cady-Pereira, K. E.,
 Alvarado, M. J., and Holmes, C. D.: Contrasting the direct radiative effect and
 direct radiative forcing of aerosols, Atmos. Chem. Phys., 14(11), 5513-5527, doi:
 10.5194/acp-14-5513-2014, 2014.
- Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The
 Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
- 37 Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T.F.,
- Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,
- Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United
- 40 Kingdom and New York, NY, USA, 1535 pp, 2013.
- Jeong, J. I., and Park, R. J.: Effects of the meteorological variability on regional air
 quality in East Asia, Atmos. Environ., 69, 46–55,
 doi:10.1016/J.Atmosenv.2012.11.061, 2013.
- 44 Jhun, J.-G., and Lee, E.-J.: A New East Asian Winter Monsoon Index and Associated

- 1 Characteristics of the Winter Monsoon, J. Clim., 17, 711–726, 2 doi:10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2, 2004.
- 3 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell,
- 4 M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah,
- 5 M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J.,
- Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, Bull.
 Amer. Meteor. Soc., 77, 437–
- 7 Amer. Meteor. Soc., 77,
- 8 471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
- 9 Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui,
- T., Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse
 gases over Asian regions during 2000–2008: Regional Emission inventory in Asia
- 12 (REAS) version 2, Atmos. Chem. Phys., 13, 11019–11058,
- doi:10.5194/acp-13-11019-2013, 2013.
- Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies
 induced by aerosol direct forcing: The role of the Tibetan Plateau, Climate Dyn.,
 26, 855–864.
- Li, J., and Zeng, Q.: A unified monsoon index, Geophys. Res. Lett., 29, 115-1–115-4,
 doi:10.1029/2001GL013874, 2002.
- Li, K., Liao, H., Mao, Y. H., and Ridley, D. A.: Sectoral and Regional Contributions
 to Black Carbon and its Direct Radiative Forcing in China, Atmos. Environ., 124,
 351–366, doi:10.1016/j.atmosenv.2015.06.014, 2016.
- Li, Q., Zhang, R., and Wang, Y.: Interannual variation of the wintertime fog-haze
 days across central and eastern China and its relation with East Asian winter
 monsoon, Int. J. Climatol., doi: 10.1002/joc.4350, 2015.
- Lin, S.-J., and Rood, R. B.: Multidimensional flux-form semi-Lagrangian transport
 schemes, Mon. Weather Rev., 124, 2046–2070, 1996.
- Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from 210Pb and 7Be
 on wet deposition and transport in a global three-dimensional chemical tracer
 model driven by assimilated meteorological fields, J. Geophys. Res. Atmos.,
 106(D11), 12109–12128, doi:10.1029/2000JD900839, 2001.
- Liu, X., Yan, L., Yang, P., Yin, Z.-Y., and North, G. R.: Influence of Indian Summer
 Monsoon on Aerosol Loading in East Asia, J. Appl. Meteor. Climatol., 50, 523–
 533, doi:10.1175/2010JAMC2414.1, 2010.
- Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous
 aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11(18),
 9839–9864, doi:10.5194/acp-11-9839-2011, 2011.
- Mao, Y. H., Liao, H., Han, Y., and Cao, J.: Impacts of meteorological parameters and
 emissions on decadal and interannual variations of black carbon in China for
 1980–2010, J. Geophys. Res. Atmos., 121, 1822–1843,
 doi:10.1002/2015JD024019, 2016.
- Meehl, G. A., Arblaster, J. M., and Collins, W. D.: Effects of black carbon aerosols on
 the Indian monsoon, Journal of Climate, 21, 2869–2882, DOI:
 10.1175/2007JCLI1777.1, 2008.
- 44 Menon, S., Hansen, J., Nazarenko, L., and Luo, Y.: Climate effects of black carbon

- aerosols in China and India, Science, 297, 2250-2253, 2002.
- 1 Moorthi, S., and Suarez, M. J.: Relaxed Arakawa-Schubert: A parameterization of 2 3 moist convection for general circulation models, Mon. Wea. Rev., 120, 978-1002, 4 1992. Mu, Q., and Liao, H.: Simulation of the interannual variations of aerosols in China: 5 role of variations in meteorological parameters, Atmos. Chem. Phys., 14, 9597-6 7 9612, doi:10.5194/acp-14-9597-2014, 2014. 8 Niu, F., Li, Z., Li, C., Lee, K., and Wang, M.: Increase of wintertime fog in China: 9 Potential impacts of weakening of the Eastern Asian monsoon circulation and 10 increasing aerosol loading, J. Geophys. Res., 115, D00K20, 2010. Ohara T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, 11 12 T.: An Asian emission inventory of anthropogenic emission sources for the period 13 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, 2007. Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous 14 aerosols over the United States and implications for natural visibility, J. Geophys. 15 Res. Atmos., 108 (D12), 4355, doi: 10.1029/2002JD003190, 2003. 16 Oin, Y., and Xie, S. D.: Spatial and temporal variation of anthropogenic black carbon 17 emissions in China for the period 1980-2009, Atmos. Chem. Phys., 12(11), 18 4825-4841, doi:10.5194/acp-12-4825-2012, 2012. 19 Qu, W., Wang, J., Zhang, X., Yang, Z., and Gao, S.: Effect of cold wave on winter 20 21 visibility over eastern China, J. Geophys. Res. Atmos., 120, 2394-2406, 22 doi:10.1002/2014JD021958, 2015. Ramanathan, V., and Carmichael, G.: Global and regional climate changes due to 23 black carbon, Nature Geosci., 1 (4), 221-227, doi:10.1038/ngeo156, 2008. 24 25 Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, R., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G-K, Bloom, S., Chen, J., 26 Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., 27 Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., 28 Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: 29 30 NASA's Modern-Era Retrospective Analysis for Research and Applications, J.
- Climate, 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1, 2011. 31
- 32 Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, 33 H., Bellouin, N., Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kinne, S.,
- Kirkev åg, A., Lamarque, J. F., Lin, G., Liu, X., Penner, J. E., Seland, Ø., Skeie, R. 34
- B., Stier, P., Takemura, T., Tsigaridis, K., and Zhang, K.: Black carbon vertical 35
- profiles strongly affect its radiative forcing uncertainty, Atmos. Chem. Phys., 13(5), 36 37 2423-2434, doi:10.5194/acp-13-2423-2013, 2013.
- Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., 38 Klimont, Z., Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes, F., 39 Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K., Höglund-Isaksson, L., 40 Emberson, L., Streets, D., Ramanathan, V., Hicks, K., Oanh, N. T. K., Milly, G., 41 42 Williams, M., Demkine, V., and Fowler, D.: Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security, Science, 43
- 44 335(6065), 183-189, doi:10.1126/science.1210026, 2012.

- Smith, S. J., and Mizrahi, A.: Near-term climate mitigation by short-lived forcers,
 Proceedings of the National Academy of Sciences, 110(35), 14202–14206,
 doi:10.1073/pnas.1308470110, 2013.
- 4 Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla,
- P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire
 emissions and the contribution of deforestation, savanna, forest, agricultural, and
 peat fires (1997–2009), Atmos. Chem. Phys., 10(23), 11707–11735,
- 8 doi:10.5194/acp-10-11707-2010, 2010.
- Walcek, C. J., Brost, R. A., and Chang, J. S.: SO₂, sulfate, and HNO₃ deposition
 velocities computed using regional land use and meteorological data, Atmos.
 Environ, 20, 949–964, 1986.
- Wang, L., Huang, R., Gu, L., Chen, W., and Kang, L.: Interdecadal Variations of the
 East Asian Winter Monsoon and Their Association with Quasi-Stationary Planetary
 Wave Activity, J. Clim., 22, 4860–4872, doi:10.1175/2009JCLI2973.1, 2009.
- Wang, L., Zhang, N., Liu, Z., Sun, Y. Ji, D. and Wang, Y.: The Influence of Climate
 Factors, Meteorological Conditions, and Boundary-Layer Structure on Severe
 Haze Pollution in the Beijing-Tianjin-Hebei Region during January 2013,
 Advances in Meteorology, 685971, doi:10.1155/2014/685971, 2014.
- Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C.,
 Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources
 of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring:
- implications for radiative forcing, Atmos. Chem. Phys., 11(23), 12453–12473,
 doi:10.5194/acp-11-12453-2011, 2011.
- Wang, R., Tao, S., Wang, W., Liu, J., Shen, H., Shen, G., Wang, B., Liu, X., Li, W.,
 Huang, Y., Zhang, Y., Lu, Y., Chen, H., Chen, Y., Wang, C., Zhu, D., Wang, X.,
- Li, B., Liu, W., and Ma, J.: Black carbon emissions in China from 1949 to 2050,
 Environ. Sci. Technol., 46(14), 7595–7603, doi:10.1021/es3003684, 2012.
- Wu, B., and Wang, J.: Winter Arctic Oscillation, Siberian High and East Asian Winter
 Monsoon, Geophys. Res. Lett., 29, 1897, doi:10.1029/2002gl015373, 2002.
- Yan, H., Zhou, W., Yang, H., and Cai, Y.: Definition of an East Asian Winter
 Monsoon Index and Its Variation Characteristics, Transactions of Atmospheric
 Sciences, 32(3), 367–376, 2009 (in Chinese).
- Yan, L., Liu, X., Yang, P., Yin, Z.-Y., and North, G. R.: Study of the Impact of
 Summer Monsoon Circulation on Spatial Distribution of Aerosols in East Asia
 Based on Numerical Simulations, J. Appl. Meteor. Climatol., 50, 2270–2282,
 doi:10.1175/2011JAMC-D-11-06.1, 2011.
- Yang, Y., Liao, H., and Li, J.: Impacts of the East Asian summer monsoon on
 interannual variations of summertime surface-layer ozone concentrations over
 China, Atmos. Chem. Phys., 14, 6867–6880, doi:10.5194/acp-14-6867-2014, 2014.
- 40 Yang, Y., Liao, H., and Lou, S.: Decadal trend and interannual variation of outflow of
- 41 aerosols from East Asia: Roles of variations in meteorological parameters and
 42 emissions, Atmos. Environ., 100, 141–153, 2015.
- Yin, Z., Wang, H., and Guo, W.: Climatic change features of fog and haze in winter
 over North China and Huang-huai Area, Science China Earth Sciences, doi:

- 1 10.1007/s11430-015-5089-3, 2015.
- Zhang, G. J., and McFarlane, N. A.: Role of convective-scale momentum transport in
 climate simulation, J. Geophys. Res., 100, 1417–1426, doi:10.1029/94JD02519,
 1995.
- Zhang, L., Liao, H., and Li, J.: Impact of the Southeast Asian summer monsoon
 strength on the outflow of aerosols from South Asia, Ann. Geophys., 28, 277–287,
 2010a.
- 8 Zhang, L., Liao, H., and Li, J.: Impacts of Asian summer monsoon on seasonal and
 9 interannual variations of aerosols over eastern China, J. Geophys. Res. Atmos.,
 10 115(D7), D00K05, doi:10.1029/2009JD012299, 2010b.
- Zhang, X. Y., Wang, Y. Q., Zhang, X. C., Guo, W., and Gong, S. L.: Carbonaceous
 aerosol composition over various regions of China during 2006, J. Geophys. Res.
- 13 Atmos., 113 (D14), D14111, doi:10.1029/2007JD009525, 2008.
- Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and
 Sun, J. Y.: Atmospheric aerosol compositions in China: spatial/temporal variability,
 chemical signature, regional haze distribution and comparisons with global
 aerosols, *Atmos. Chem. Phys.*, 12, 779–799, doi:10.5194/acp-12-779-2012, 2012.
- Zhang, Y., Ding, A., Mao, H., Nie, W., Zhou, D., Liu, L., Huang, X., and Fu, C.:
- Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980–2013, Atmospheric Environment, 124B, 119–128, 2016.
- Zhou, W., Tie, X., Zhou, G., and Liang, P.: Possible effects of climate change of wind
 on aerosol variation during winter in Shanghai, China, Particuology, 20, 80–88,
 doi:10.1016/j.partic.2014.08.008, 2015.
- Zhu, J., Liao, H., and Li, J.: Increases in aerosol concentrations over eastern China
 due to the decadal-scale weakening of the East Asian summer monsoon, Geophys.
 Res. Lett., 39, L09809, doi:10.1029/2012GL051428, 2012.
- 28 29 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38

Table 1. Correlation coefficients among different definitions of the strength of the East Asian winter monsoon (EAWM), and between the EAWM Index (EAWMI) and simulated December-January-February (DJF) mean surface BC concentrations averaged over eastern China (110–125 °E, 20–45 °N). Simulated BC concentrations are from model simulations VMETG4 and VMET, and corresponding monsoon indexes are calculated based on GEOS-4 and MERRA assimilated meteorological data.

Correlation	GEOS-4 (1986-2006)		MERRA (1986-2006)		MERRA (1980-2010)	
	EAWMI ¹	BC	EAWMI	BC	EAWMI	BC
EAWMI_T ²	0.63	-0.57	0.58	-0.16	0.56	-0.29
EAWMI_V ³	0.51	-0.31	0.56	-0.50	0.54	-0.40
EAWMI_U ⁴	0.77	-0.42	0.82	-0.72	0.73	-0.69
EAWMI_P1 ⁵	0.65	-0.33	0.72	-0.38	0.77	-0.41
EAWMI_P2 ⁶	0.71	-0.61	0.72	-0.68	0.70	-0.66

8 ${}^{1}\text{EAWMI}_{i} = \text{norm}(\sum_{20^{\circ}\text{N}}^{70^{\circ}\text{N}}(P_{1i} - P_{2i})), P_{1i} \text{ is the DJF mean sea level pressure over } 110^{\circ}\text{E}, P_{2i} \text{ is the}$ 9 DJF mean sea level pressure over 160°E (Wu and Wang, 2002).

- 10 ${}^{2}\text{EAWMI}_{T_{i}} = \overline{\overline{T}} \overline{T}_{i}, \ \overline{T}_{i}$ is the DJF mean surface temperature over the region of 20–40 °N and 110– 11 135 °E for year *i*, $\overline{\overline{T}}$ is the mean of \overline{T}_{i} (Yan et al., 2009).
- 12 ³EAWMI_ $V_i = \overline{V} \overline{V}_i$, \overline{V}_i is the DJF mean 850 hpa meridional wind over the region of 20–40 °N and 13 110–135 °E for year *i*, \overline{V} is the mean of \overline{V}_i (Yan et al., 2009).
- 14 $^{4}EAWMI_U_i = \overline{U_{1i}} \overline{U_{2i}}, \ \overline{U_{1i}}$ is the DJF mean 300 hpa zonal wind over the region of 27.5–37.5 °N15and 110–170 °E for year $i, \overline{U_{2i}}$ is the DJF mean 300 hpa zonal wind over the region of1650–60 °N and 80–140 °E for year i (Jhun et al., 2004).

17 ${}^{5}EAWMI_P_{1i} = \overline{P_{1i}} - \overline{P_{2i}}, \ \overline{P_{1i}}$ is the DJF mean sea level pressure over the region of 30–55 °N and18110–130 °E for year $i, \overline{P_{2i}}$ is the DJF mean sea level pressure over the region of 20–40 °19N and 150–180 °E for year i (Yan et al., 2009).

20 ⁶EAWMI_ $P_{2i} = \overline{P_{1i}}$, $\overline{P_{1i}}$ is the DJF mean sea level pressure over the region of 40–60 °N and 80–120 ° 21 E for year *i* (Yan et al., 2009).

- Table 2. Simulated JJA (DJF) mean surface BC concentrations ($\mu g m^{-3}$) in the five
- weakest and five strongest EASM (EAWM) years during 1986-2006. Results are
- from simulations VMETG4 and VMET averaged over northern China (110-125°E,
- 28-45 °N), southern China (110-125 °E, 20-27 °N), and eastern China (110-125 °E,
- 20–45 °N).

Month	Region	Surface Concentrations of BC (µg m ⁻³)						
		GEOS-4		MERRA				
		Weak	Strong	Difference ^a	Weak	Strong	Difference	
JJA	southern China	0.24	0.27	-0.03 (-11%)	0.37	0.41	-0.04 (-10%)	
	northern China	0.94	0.85	0.09 (11%)	1.30	1.26	0.04 (3%)	
	eastern China	0.72	0.67	0.05 (9%)	1.02	1.00	0.02 (2%)	
DJF	southern China	0.90	0.80	0.10 (12%)	1.14	1.10	0.04 (3%)	
	northern China	1.76	1.63	0.13 (8%)	2.76	2.62	0.14 (5%)	
	eastern China	1.37	1.50	0.12 (9%)	2.26	2.15	0.11 (5%)	

- ^aThe difference is (Weakest-Strongest) and the relative difference in percentage is in parentheses.

1	Table 3. The composite analyses of JJA (DJF) horizontal fluxes of BC (kg s^{-1}) for
2	two selected boxes (northern China (110–125 $^{\circ}$ E, 28–45 $^{\circ}$ N) and southern China
3	(110–125 $^{\circ}\text{E},$ 20–27 $^{\circ}\text{N}),$ from the surface to 10 km) based on simulations VMETG4
4	and VMET. The values are averages over the five weakest and five strongest EASM
5	(EAWM) years during 1986-2006. For horizontal fluxes, positive values indicate
6	eastward or northward transport and negative values indicate westward or southward
7	transport.

Boundary	GEOS-4			MERRA	MERRA		
	Weakest	Strongest	Difference ^a	Weakest	Strongest	Difference ^a	
		JJA, nor	thern China (1	10–125 °E,	28–45 °N)		
South	+2.24	+0.97	+1.27	+1.93	+0.92	+1.01	
North	+3.44	+4.06	-0.62	+3.90	+4.57	-0.67	
West	+6.60	+4.20	+2.40	+8.72	+7.51	+1.21	
East	+12.48	+9.20	+3.28	+3.60	+2.31	+1.29	
Net	inflow 1.	01		inflow 1.	+2.51 +1.29 50 20–27 °N)		
		JJA, sou	thern China (1	10–125 °E,	20–27 °N)		
South	+0.62	+0.70	-0.08	+0.61	+0.60	+0.01	
North	+1.79	+0.88	+0.91	+1.67	+0.95	+0.72	
West	+0.94	+0.13	+0.81	+0.47	+0.12	+0.35	
East	+0.33	+0.42	-0.09	+0.18	+0.27	-0.09	
Net	outflow ().09		outflow	0.27		
	DJF, northern China (110–125 °E, 28–45 °N)						
South	-6.35	-8.24	+1.89	-4.51	-5.96	+1.45	
North	-0.37	-0.71	+0.34	+0.64	-0.28	+0.92	
West	+11.60	+11.41	+0.19	+12.01	+12.90	-0.89	

East	+22.77	+21.67	+1.10	+23.55	+24.53	-0.98		
Net	inflow 0.64			inflow 0	inflow 0.62			
		DJF, so	outhern China (110–125 °E	E, 20–27 °N)			
South	-3.09	-3.61	+0.52	-2.77	-3.47	+0.70		
North	-5.23	-6.68	+1.45	-4.40	-5.59	+1.19		
West	+1.03	-0.64	+1.67	+1.24	+0.25	+0.99		
East	+2.68	+2.13	+0.55	+0.98	+0.88	+0.10		
Net	inflow 0.19			inflow 0	.40			

^{1 &}lt;sup>a</sup>The difference is (Weakest–Strongest).

1 Table 4. Simulated JJA (DJF) mean all-sky direct radiative forcing (DRF) of BC (W

- $2 m^{-2}$) at the top of the atmosphere (TOA) in the five weakest and five strongest EASM
- 3 (EAWM) years during 1986–2006. Results are from simulation VMET averaged over
- 4 eastern China (110–125 °E, 20–45 °N), northern China (110–125 °E, 28–45 °N), the
- 5 northern China Plain (110–125 °E, 37–45 °N), the central China Plain (110–125 °E,
- 6 28-36 °N), and southern China (110–125 °E, 20–27 °N).
- 7

Month	Region	TOA DRF of BC, MERRA (W m^{-2})				
	_	Weak	Strong	Difference ^a		
JJA	southern China	0.34	0.40	-0.06 (14%)		
	northern China	1.41	1.38	0.04 (3%)		
	eastern China	1.08	1.07	0.01 (1%)		
DJF	southern China	1.04	1.07	-0.03 (3%)		
	northern China	1.65	1.62	0.03 (2%)		
	central China Plain	2.11	2.14	-0.03 (1%)		
	northern China Plain	1.08	0.97	0.11 (11%)		
	eastern China	1.46	1.45	0.01 (1%)		

^aThe difference is (Weakest-Strongest) and the relative difference in percentage is in parentheses.

9 10 11

8

- 12
- 13
- 14
- 15
- 16
- 17

1	Table 5. The	composite anal	yses of DJI	F horizontal	and vertical	fluxes of E	$BC (kg s^{-1})$
---	--------------	----------------	-------------	--------------	--------------	-------------	------------------

- 2 for two selected boxes (the central China Plain (110–125 °E, 27–36 °N) and southern
- 3 China (110–125 ° E, 20–27 ° N), from 1 to 6 km) based on simulation VMET. The

4 values are averages over the five weakest and five strongest EAWM years during

- 5 1986-2006. For fluxes, positive values indicate eastward, northward, or upward
- 6 transport and negative values indicate westward, southward, or downward transport.

Boundary	Weakest	Strongest	Difference ^a	Net			
	DJF, central China Plain (110–125 °E, 28–36 °N)						
South	+1.29	+0.98	+0.31	Inflow 0.01			
North	+0.53	+0.07	+0.46				
West	+7.84	+8.89	-1.05				
East	+7.39	+8.61	-1.21				
Upper	+0.99	+1.24	-0.25	outflow 0.11			
Bottom	+5.22	+5.56	-0.34				
	DJF, s	outhern China (110–125 °E, 20–	-27 °N)			
South	-0.08	-0.20	+0.12	inflow 0.03			
North	+0.91	-0.67	+0.24				
West	+4.40	+4.37	+0.03				
East	+1.70	+1.82	-0.12				
Upper	+0.09	+0.06	+0.03	outflow 0.07			
Bottom	+1.12	+1.16	-0.04				

^{7 &}lt;sup>a</sup>The difference is (Weakest–Strongest)

Fig. 1. (a) Normalized East Asian summer monsoon Index (EASMI, bars, left y axis) and the simulated June-July-August (JJA) mean surface BC concentrations (lines, right y axis, $\mu g m^{-3}$) averaged over eastern China (20–45° N, 110–125° E) from model simulation VMET (red line) for 1980–2010 and from VMETG4 (blue line) for 1986–2006. EASMI are calculated based on MERRA (red bars) and GEOS-4 (blue bars) assimilated meteorological data following Li and Zeng (2002). **(b)** Same as **(a)**, but for normalized East Asian winter monsoon Index (EAWMI) and the simulated December-January-February (DJF) mean surface BC concentrations. EAWMIs are calculated following Wu and Wang (2002).

Fig. 2. (a) JJA and DJF mean precipitation (mm d⁻¹) averaged over eastern China for 1986–2006 from GEOS-4 (blue lines) and MERRA (red lines) meteorological data. DJF mean precipitation is multiplied by 5 in (a2). (b) Same as (a), but for wet deposition (kg s⁻¹).

-0.8 -0.5 -0.3 -0.2 -0.1 -0.05 0.05 0.1 0.2 0.3 0.5 0.8

Fig. 3. (a) Correlation coefficients between EASMI and JJA mean surface BC concentrations during 1986–2006. **(b)** Correlation coefficients between EAWMI and DJF mean surface BC concentrations during 1986–2006. Simulated BC concentrations are from model simulations VMETG4 (left) and VMET (right), and monsoon indexes are calculated based on GEOS-4 (left) and MERRA (right) assimilated meteorological data.

Fig. 4. (a1) Absolute (μ g m⁻³) and **(a2)** percentage (%) differences in simulated JJA mean surface BC concentrations between weakest (1988, 1993, 1995, 1996, and 1998 and strongest (1990, 1994, 1997, 2004, and 2006) EASM years during 1986–2006 from model simulations VMETG4 and VMET. **(b1)** and **(b2)** Same as **(a1)** and **(a2)**, respectively, but for absolute (μ g m⁻³) and percentage (%) differences in simulated DJF mean surface BC concentrations between weakest (1990, 1993, 1997, 1998, and 2002) and strongest (1986, 1996, 2001, 2005, and 2006) EAWM years. The enclosed areas are defined as northern China (NC, 110–125° E, 28–45° N) and southern China (SC, 110–125° E, 20–27° N).

Fig. 5. (a) Height-latitude cross section of differences in simulated JJA mean BC concentrations (μ g m⁻³) between the five weakest and five strongest EASM years during 1986–2006. Plots are averaged over longitude range of 110–125° E from model simulations VMETG4 (left) and VMET (right). (b) Same as (a), but for differences in DJF between five weakest and five strongest EAWM years.

Fig. 6. (a) Differences in JJA 850 hPa wind (vector, m s⁻¹) between the five weakest and five strongest EASM years during 1986–2006 from GEOS-4 (left) and MERRA (right) data. **(b)** Same as **(a)**, but for differences in DJF wind between five weakest and five strongest EAWM years.

Fig. 7. (a) Differences in simulated upward mass flux of JJA BC (kg s⁻¹) between the five weakest and five strongest EASM years during 1986–2006. Plots are averaged over longitude range of 110–125° E from model simulations VMETG4 (left) and VMET (right). (b) Same as (a), but for differences in DJF between five weakest and five strongest EAWM years.

Fig. 8. (a) Simulated JJA mean all-sky direct radiative forcing (DRF) of BC (W m⁻²) at the top of the atmosphere (TOA) in the **(a1)** five weakest and **(a2)** five strongest EASM years during 1986–2006 from model simulation VMET. Also shown are the **(a3)** absolute (W m⁻²) and **(a4)** percentage (%) differences between the five weakest and five strongest EASM years. **(b)** Same as **(a)**, but for simulated DJF mean all-sky TOA DRF of BC in the five weakest and five strongest EAWM years. The enclosed areas are defined as northern China (NC, 110–125° E, 28–45° N), the northern China Plain (NCP, 110–125° E, 36–45° N), the central China Plain (CCP, 110–125° E, 28–36° N), and southern China (SC, 110–125° E, 20–27° N).

Fig. 9. (a) Height-latitude cross sections of simulated JJA mean all-sky DRF of BC (W m⁻²) in the **(a1)** five weakest and **(a2)** five strongest EASM years during 1986–2006. Also shown are the **(a3)** absolute (W m⁻²) and **(a4)** percentage (%) differences between the five weakest and five strongest EASM years. Plots are averaged over longitude range of 110–125° E from model simulation VMET. **(b)** Same as **(a)**, but for simulated DJF mean all-sky DRF of BC in the five weakest and five strongest EAWM years.

Fig. 10. (a1) Simulated vertical profiles of JJA BC mass concentrations ($\mu g m^{-3}$) averaged over 1986–2006. The error bars represent the minimum and maximum values of BC. Results are averages over eastern China from model simulations VMETG4 (blue) and VMET (red). **(a2)** Differences in simulated vertical profiles of JJA BC mass concentrations ($\mu g m^{-3}$) between the five weakest and five strongest EAM years (solid lines) during 1986–2006, and between the weakest and strongest EASM years (1998–1997, dotted lines). Results are averages over eastern China, northern China, and southern China from model simulations VMET. **(b1)** Same as **(a1)**, but for simulated DJF BC mass concentrations. **(b2)** Same as **(a2)**, but for differences in DJF between the five weakest and five strongest EAWM years and between the weakest and strongest EAWM years (1990–1996). Results are averages over eastern China.

Fig. 11. Same as Fig. 9, but for the contributions from non-China emissions to simulated all-sky DRF of BC.

Fig. 12. (a) Height-latitude cross sections of contributions of non-China emissions to simulated JJA mean BC concentrations (μ g m⁻³) in the (a1) five weakest and (a2) five strongest EASM years during 1986–2006. Also shown are the (a3) absolute (μ g m⁻³) and (a4) percentage (%) differences between the five weakest and five strongest EASM years. Plots are averaged over longitude range of 110–125° E from model simulation VMET. (b) Same as (a), but for simulated DJF mean BC concentrations in the five weakest and five strongest EAWM years.

Fig. 1S. JJA and DJF mean precipitation (mm d^{-1}) averaged for 1986–2006 from GEOS-4 (a) and MERRA (b) meteorological data. Also shown are the differences between GEOS-4 and MERRA data (c).